Euler's Method

This method is based on the local linearity concept we covered earlier: If we zoom in enough on a differentiable function f at a point (a, b) the function looks linear and can be approximated by the linear equation $y=f(a)+f^{\prime}(a)(x-a)$. We will use the local linearization at a point to calculate another point nearby. Then, we will use the new point and its local linearization to calculate another point. We continue this iterative process until we reach a desired stopping point. We will increase x by a fixed amount and calculate the new y-values according to the local linearization.

1. Use Euler's Method starting at $(0,1)$ with $\Delta x=0.2$ to estimate $y(1)$ given that $y^{\prime}=y$. Round to 4 decimal places. Note. Slope in this problem is given by y :

Step	x	Approximate y -value	$\Delta y=($ Slope $) \Delta x$	Notes:
0	0	1	$1 \cdot 0.2=0.2$	Add Δy to y to get new y and increase
1	0.2	1.2	$1.2 \cdot 0.2=0.24$	ne next x by Δx to each step.
2	0.4	1.44	$1.44 \cdot 0.2=0.288$	
3		1.728		
4	0.8			
5	1.0			

Use your calculator or computer to draw the slope field of the differential equation. Find the actual solution to the differential equation using the initial point $(0,1)$. Is your approximation to $y(1)$ using Euler's Method an overestimate or an underestimate? Why?
2. Use Euler's Method starting at (1,2) with $\Delta x=0.2$ to estimate $y(2)$ if $y^{\prime}=\frac{y}{x}$. Round to 4 decimal places. Note: Slope in this problem is given by \qquad .

Step	x	Approximate y -value	$\Delta y=($ Slope $) \Delta x$
0	1	2	$\left(\frac{2}{1}\right) \cdot 0.2=0.4$
1	1.2		

Use your calculator or computer to draw the slope field of the differential equation. Find the actual solution to the differential equation using the initial point (1,2). Is your approximation to $y(2)$ using Euler's Method an overestimate or an underestimate? Why?
3. Use Euler's Method starting at $(0,3)$ with $\Delta x=0.5$ to estimate $y(2)$ given that $y^{\prime}=2 x y+2 y$. Use your calculator or computer to draw the slope field of the differential equation. Find the actual solution to the differential equation using the initial point $(0,3)$. Is your approximation to $y(2)$ using Euler's Method an overestimate or an underestimate? Why?
4. Repeat the previous problem except use $\Delta x=0.25$. What can you say about your new approximation for $y(2)$?

