Steps:

1. If the numerator has a degree higher than the denominator (i.e., improper), divide so $\frac{N}{D}=($ polynomial $)+\frac{N_{1}}{D}$
2. With the remaining fraction, factor the denominator D into terms that are either linear factors of the form $(p x+q)^{m}$ and quadratic factors of the form $\left(a x^{2}+b x+c\right)^{n}$, where $a x^{2}+b x+c$ is irreducible.
3. For each linear factor Find $A_{1}, A_{2}, \ldots, A_{m}$ so that $\frac{N_{1}}{D}=\frac{A_{1}}{(p x+q)}+\frac{A_{2}}{(p x+q)^{2}}+\cdots+\frac{A_{m}}{(p x+q)^{m}}$
4. For each quadratic, do the same so that $\frac{N_{1}}{D}=$

$$
\begin{aligned}
& \frac{B_{1} x+C_{1}}{\left(a x^{2}+b x+c\right)}+\frac{B_{2} x+C_{2}}{\left(a x^{2}+b x+c\right)^{2} x+C_{n}}+\cdots+ \\
& \frac{B_{n}}{\left(a x^{2}+b x+c\right)^{n}}
\end{aligned}
$$

Example:

$$
\frac{x^{3}+x^{2}}{\left(x^{2}+4\right)^{2}}
$$

The numerator is degree 3 , and the denominator is degree 4 , so we don't have to divide since this is a proper fraction. Now we make up an A, B, C and D so that

$$
\frac{x^{3}+x^{2}}{\left(x^{2}+4\right)^{2}}=\frac{A x+B}{\left(x^{2}+4\right)}+\frac{C x+D}{\left(x^{2}+4\right)^{2}}
$$

We clear the fractions and get:

$$
x^{3}+x^{2}=(A x+B)\left(x^{2}+4\right)+C x+D
$$

Collect the terms and we have:

$$
x^{3}+x^{2}=A x^{3}+B x^{2}+(4 A+C) x+D+4 B
$$

By looking at the coefficients, we have four equations for our four unknowns:

$$
\begin{aligned}
A & =1 \\
B & =1 \\
4 A+C & =0 \\
D+4 B & =0
\end{aligned}
$$

So $A=1, B=1, C=-4$ and $D=-4$, so we have finally:

$$
\frac{x^{3}+x^{2}}{\left(x^{2}+4\right)^{2}}=\frac{x+1}{\left(x^{2}+4\right)}+\frac{-4 x-4}{\left(x^{2}+4\right)^{2}}
$$

Try These:

1. $\frac{3 x+1}{2(x+1)}$
2. $\frac{7 x+3}{(x+1)(x-1)}$
3. $\frac{7 x+3}{x^{3}-2 x^{2}-3 x}$
4. $\frac{x^{2}+2 x+3}{\left(x^{2}+4\right)^{2}}$
5. $\frac{x^{2}}{x^{3}-4 x^{2}+5 x-2}$
6. $\frac{x^{3}}{\left(x^{2}+16\right)^{3}}$
7. $\frac{2 x+3}{x^{4}-9 x^{2}}$

Answers (ziowanA) to reflect upon
$\frac{\bar{c}}{1-x}+\frac{s}{\Gamma+x} . S \frac{1}{1+x}-\frac{\varepsilon}{S} . I$
$\frac{1-x, \frac{1}{S}\left(1+S_{x}\right)}{}+\frac{1}{1+s_{x}} \cdot f \frac{1-}{1+x}+\frac{s}{\varepsilon-x}+\frac{1-}{x} . \varepsilon$

$\frac{1}{(\varepsilon+x) 8 I}+\frac{1}{(\varepsilon-x) \partial}+\frac{1-}{\left(s_{x}\right) \varepsilon}+\frac{s-}{(x) e} \cdot \Gamma$

