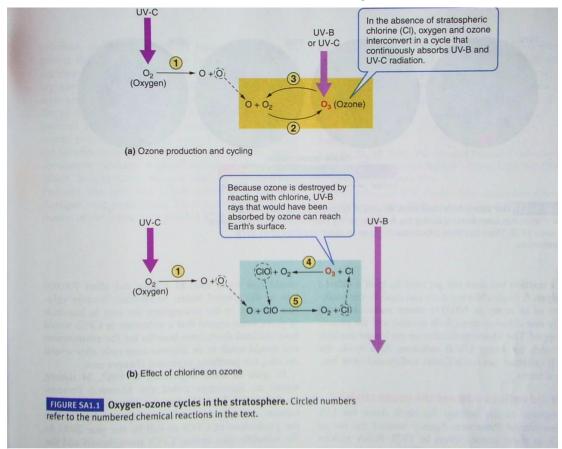
Global Change Review

Greenhouse Gases

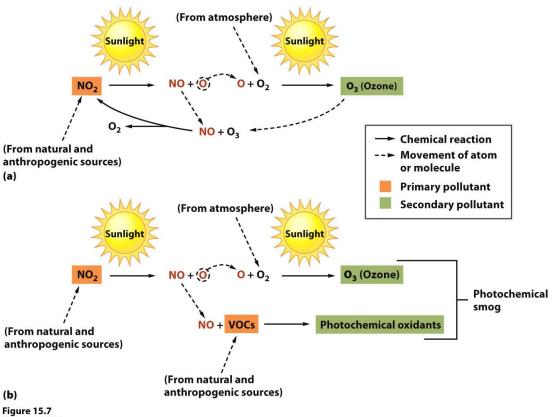
- Carbon Dioxide (CO₂)
 - Source: combustion of fossil fuels; deforestation
- Water vapor (H₂O)
 - Most abundant (nonanthropogenic) greenhouse gas & the greatest contributor to global warming
- Methane (CH₄)
 - Source: Anaerobic decomposition/respiration (ex. Landfills, bottom of wetlands, animal digestion- cow flatulence)
- Nitrous Oxide (N₂O)
 - Source: Denitrification (nitrogen cycle); agricultural soil management (ex. Commercial inorganic fertilizers)
- Chlorofluorocarbons (CFC's; ie. CCl₂F₂); pollutant
 - Source: coolants used in air conditioners, freezers, & refrigerators; aerosols
 - Exclusively anthropogenic
 - Potent greenhouse gases (more than CO₂) b/c they are more efficient at absorbing thermal radiation
- Ozone (O₃); pollutant
 - Formed in the troposphere by photochemical reactions; anthropogenic

The Greenhouse Effect

- NATURAL warming of the earth's atmosphere; Needed to sustain life on earth
- Greenhouse gases absorb IR radiation


Global Climate Change

- Occurs because of an increased <u>concentration</u> of greenhouse gases in the TROPOSPHERE absorb outgoing IR (infrared) radiation
- *AP Tip: "Carbon Dioxide is a greenhouse gas and can lead to global climate change."
 - o Then state example of WHY there may be an increase in this gas
- Anthropogenic Causes:
 - Deforestation- leads to a net ↑of CO₂
 - Combustion of fossil fuels
 - Carbon that has been sequestered is released into the atmosphere, leading to a net increase of CO₂
- Effects:
 - Temperature changes
 - Positive feedback cycle- Higher temps lead to faster decomposition → boosts rate at which CO₂ is added to atmosphere → more CO₂ promotes higher temperatures
 - Melting of polar ice caps, glaciers, & permafrost = rising sea levels
 - Troposphere will contain more water vapor
 - Possible increased frequency of heat waves, altered precipitation patterns & storm intensity, and shifting ocean currents
 - *Periodic fluctuation of CO₂ concentration is due to seasonal variations in photosynthetic activity


- *Depending on source, temp ↑ between .5°C .8°C
- Species
 - Temperature induced changes affecting growing season for plants → alters habitats
 - Species with a low range of tolerance may die → disrupts food webs → possible extinction of species (decrease biodiversity)
- Solutions:
 - Kyoto Protocol- Global legislation to reduce greenhouse gases
 - Carbon Sequestering- taking CO₂ out of the atmosphere
 - Ex. Store carbon in soil, pasture, forests, or oceans

Ozone ("Good up high; Bad nearby")

- Stratopheric Ozone
 - O₃ protects earth by filtering UV radiation
 - Ozone Depletion
 - CFC (anthropogenic chemicals from coolants & aerosols) deplete the good ozone.
 - Causes a hole (mostly in the Antarctic) that lets in more UV radiation
 - More UV radiation causes
 - ↑Skin cancer (esp. in Australia) and cataracts in humans
 - ↓Photosynthesis in plants
 - Solutions
 - Montreal Protocol- Global legislation to reduce CFC's

- Tropospheric Ozone (pollutant AND greenhouse gas)
 - o Secondary pollutant caused by photochemical reactions; "Photochemical Smog"
 - NOx + VOCs + sunlight \rightarrow O3
 - *NOx & VOCs are from fossil fuels
 - o Effects:
 - Humans
 - Respiratory distress such as aggravating asthma & bronchitis; irritates eyes, nose, throat & lungs; coughing
 - Environment
 - Disrupts photosynthesis in plants; Leaves wither & turn brown
 - Crop damage; ↓ yields
 - Greenhouse gas and can lead to global climate change

Environmental Science
© 2012 W. H. Freeman and Company