Euler's Method

Euler's Method is used to generate numerical approximations for solutions to differential equations. It is necessary to know an initial point and a rate of change (the derivative) for the function. Euler's Method uses locally linear approximations at successive steps to estimate the solutions/

Required information: (x_0, y_0) an initial point (x_0, y_0) the derivative $\frac{dy}{dx}$ the differential or increment of x dx

Starting at the initial point (x_0, y_0) , the next point is found by using the formulas

and $x_1 = x_0 + \Delta x$ $y_1 = y_0 + \Delta y$.

But we don't know the exact value of Δy , so we can approximate it by dy when the increment is very small. So, Δx

and $x_1 = x_0 + dx$ $y_1 = y_0 + f'(x_0, y_0) * dx.$

Subsequent points are found by using the general formulas

and $x_{n+1} = x_n + dx$ $y_{n+1} = y_n + f'(x_n, y_n) * dx.$ Example 1. Given with y(0) = 1 and dx = 0.1, find the first two $\frac{dy}{dx} = 2x + y$

approximations y_1 and y_2 using Euler's Method.

It is helpful to organize your information in a table

Initial x	Initial y	$\Delta x = dx$	$\Delta y \approx dy = f'(x, y) * dx$ $dy = (2x + y)dx$	New x = Initial x + dx	New y= Init y + dy
0	1				