Section V: Energy

Energy Concepts

- 1st Law of Thermodynamics: Energy is not created or destroyed; transferred from one form to another
- 2nd Law of Thermodynamics: Entropy; No energy transformation is 100% efficient
- Electricity Generation
 - Fuel sources (steam) → turbine (mechanical energy) → generator (electrical energy) → grid
- OIL supplies most of the commercial energy in the world today
- COAL supplies most of the energy for electricity in the USA

Non-Renewable Fuel Sources: Fossil Fuels (Coal, Oil, & Natural Gas) and Nuclear

- Coal
 - o 30% efficient
 - US, Russia, China = most coal reserves
 - Peat → Lignite → Bituminous → Anthracite ("People Like Being Awesome")
 - Extraction
 - Surface Mining (mountaintop removal & strip mining)
 - Habitat destruction → disrupts food webs → decrease biodiversity
 - Acid Mine Drainage (due leaching of spoil heaps by rainwater)
 - Sulfur in spoil heaps + water (from rain) = sulfuric acid
 - Decrease in pH of aquatic systems = species w/ a low range of tolerance to pH may die → disrupts food webs → decreases biodiversity
 - Subsurface Mining
 - Better for environment, worse for human health (ex. black lung)
 - Combustion of coal \rightarrow steam \rightarrow turbine \rightarrow generator \rightarrow grid
 - Emissions
 - CO₂, a greenhouse gas → can lead to global climate change
 - Solutions: Rely less on fossil fuels, more on renewable energy (ex. solar & wind); plant trees (photosynthesize = take in CO₂); Conservation of electricity (ex. turn off lights)
 - SO₂ = a pollutant that combines with water in the atmosphere → sulfuric acid → acid rain → decrease pH of aquatic & terrestrial systems → species w/ a low range of tolerance (ie. trout) may die → disrupting food webs → decreasing biodiversity
 - Solutions

Clean Coal Technology

 Wet Scrubber Units, Fluidized gas combustion, add limestone to coal when burned

- Clean Air Act
- Mercury: majority of atmospheric mercury (Hg) comes from coal burning power plants
 - Effects: neurotoxin = may cause mental retardation;
 bioaccumulates in the food webs (ex. fish)

Oil

- Used for electricity, heating, & transportation; 50 years left
 - also used to make plastics ("petrochemicals"), make-up, paints, asphalt, etc...
- Most reserves located in the Middle East
- o Extraction: drill for oil
 - Impacts: Habitat destruction, possibility of oil spills
- Transportation (pipeline, trucks, oil tankers)
 - Impacts: Habitat destruction, decreases gene flow between species, possibility of oil spills
 - Booms, Boats, Bacteria to clean up oil spills
- o Refinery: oil is separated into components based on different BOILING POINTS
- Emissions
 - CO₂, a greenhouse gas → can lead to global climate change
 - Solutions: Rely less on fossil fuels, more on renewable energy (ex. solar & wind); plant trees (photosynthesize = take in CO₂);
 Conservation of electricity (ex. turn off lights)
 - CO, a pollutant binds to red blood cells = decreases O₂ in body
 - NOx & VOC, pollutants- + Sunlight = photochemical smog (made up primarily of ozone [O3])
 - Decreases photosynthesis in plants
 - Causes respiratory distress in humans (aggravates bronchitis & asthma)

Natural Gas

- Used for electricity, heating, & transportation
- Most reserves located in Middle East & Russia
- *Cleanest fossil fuel
- o Extraction: drilling
 - Hydraulic Fracturing aka "Fracking"
 - Large inputs of water and chemicals → may contaminate groundwater with chemicals &/or methane
 - May cause earthquakes
 - Economic benefit: provides jobs; US energy independence
- \circ Methane (CH₄) = a greenhouse gas \rightarrow can lead to global climate change
 - *CH₄ is 23X stronger than CO₂ (as a ghg, meaning it absorbs more outgoing IR radiation in troposphere) effect = greater warming

Nuclear

o 10-14% efficient

- Extraction: Mining for Uranium (a rock); Fuel source = U235
- *Be able to identify & describe parts of a power plant
 - Containment structure: protection
 - Control rods: control RATE of nuclear fission by absorbing excess neutrons
 - Reactor core: where fission takes place
- Issues
 - Thermal Pollution (species w/ a low range of tolerance to temperature may die → disrupts food webs → decreases biodiversity)
 - NIMBY
 - Wastes are stored at reactor sites
 - Case Studies: Chernobyl, Ukraine: 3 Mile Island, PA, USA; Fukushima,
 Japan
 - Effects of Radiation: mutates DNA, birth defects/miscarriages, cancer
- *Review ½ life equations in powerpoint

Renewable Fuel Sources

- Biomass
 - Used for electricity, heating, cooking, & transportation fuel (ex. ethanol)
- Hydroelectric
 - Water → turbine → generator
 - Advantages of Dams: Recreation (ex. swimming & fishing); decrease likelihood of floods downstream; hydropower
 - Disadvantages of dams:
 - Silt gets stuck in dams (doesn't make it downstream) = farmers apply fertilizers → NPK runoff into aquatic systems = eutrophication (algal bloom → compete for resources & die → aerobic bacteria break them down → decrease in DO (dissolved oxygen) → species w/ a low range of tolerance die
 - Fish can't swim upstream to spawn
 - Solution: Fish Ladders
 - *Largest Hydroelectric Dam in the world: Three Gorges Dam on the Yangtze River in China
 - TIDAL Power use tides to turn turbine → generator

Solar

- Thermal
 - Passive
 - South facing homes; triple-paned windows; heat absorbent floors
 - Active
 - Use a pump (requires energy input) to move water. Solar energy HEATS water
- Electric

- Photovoltaic (PV) cells on rooftops: photons in sunlight knock electron lose; DC → AC
- Solar Power Plant → parabolic mirrors focus light → heat → steam → turbine → generator

Geothermal

Dig a shaft underground to a steam reservoir → steam → turbine → generator

Wind

- Wind → turbine → generator
- o Pros: clean (no CO2 or pollutants [ex. SO2]), cheap, predicable
- o Con: bird hazard, noise pollution, visual pollution, NIMBY

Hydrogen Fuel Cell

- H⁺ protons diffuse through membrane while e⁻ can not and therefore create a current of electricity as they go around the membrane.
 - May be used as a transportation fuel in the future &/or homes/Industry (ex. combine w/ solar- day; H- night)

Transportation

- Types of vehicles
 - Internal Combustion Engine
 - Powered by gasoline = emits CO₂ (a ghg → gcc) and NO_x & VOC (pollutants that form photochemical smog in presence of sunlight. Disrupts photosynthesis in plants and causes respiratory distress [ie. aggravates bronchitis & asthma] in humans)
 - Solutions: carpool, walk, ride a bike; Eco-driving tips (ex. don't accelerate rapidly)
 - Electric Vehicle
 - Powered by electricity (plug in & recharge at night)
 - Clean (no harmful emissions) while driving vehicle, although of course there are pollutants released in the mining of the raw materials and assembly of vehicle + emissions if electricity comes from coal
 - Hybrid (internal combustion engine + generator & batteries)
 - Powered by gasoline, but uses less gasoline and therefore emits fewer greenhouse gases (CO₂) and pollutants (NO_x & VOC)
- CAFÉ Standards- gov regulations for mile per gallon (mpg) that vehicles must get

Improving Energy Conservation & Efficiency

- Use CFL/LED rather than incandescent light bulbs
- Turn off lights
- Insulate & plug leaks
- Turn thermostat down in winter, up in summer
- Buy energy star appliances
- Unplug electric appliances/use a power strip
- Triple-paned windows
- Shorter/less frequent showers
- Use public transportation, carpool, ride a bike, walk

FRQ's

1998 Q3 Nuclear Power Plant

1999 Q2 Nonrenewable vs Renewable Energy; Resource use in developing vs developed countries

2000 Q1 Energy Math; Coal/Sulfur

2001 Q1 Energy Math; energy efficiency

2002 Q1 Electric Cars

2004 Q2 Energy Math; Coal vs Wind power

2004 Q3 Low vs High level radioactive waste

2005 Q3 Coal Mining

2005 Q4 Oil extraction; ANWR

2006 Q1 Solar

2007 Q2 Energy Math; energy efficiency

2008 Q1 Energy Math; biodiesel (biomass)

2009 Q2 Energy Math; using methane from cows --> electricity

2011 Q3 GDP vs annual electricity use

2012 Q1 Natural Gas (fracking)

2012 Q2 Energy Math; energy conservation

2013 Q2 Energy Math; cars