Calc BC: 8.1 Basic Integration Rules Name:

In the sections following this one, we will expand on the basic integration techniques in order to learn how to solve higher level integrals. A listing of all the basic integration rules can be found on the inside front cover of this book. The key to solving an integration problem is identifying which integration technique to use. We will review the basic techniques in this section before moving to higher level integrals.

Example: A Comparison of Three Similar Integrals

$$a)\int \frac{4}{x^2+9}dx$$

1. Expand a function:

$$(1+e)^2 = 1 + 2e^x + e^{2x}$$

2. Separate the numerator:

$$\frac{x+1}{x^2+1} = \frac{x}{x^2+1} + \frac{1}{x^2+1}$$

3. Complete the square:

$$\frac{1}{\sqrt{2x - x^2}} = \frac{1}{\sqrt{1 + (-1)(x^2 - 2x + 1)}} = \frac{1}{\sqrt{1 - (x - 1)^2}}$$

4. Long division:

$$\frac{x^2}{x^2+1} = 1 - \frac{1}{x^2+1}$$

5. Add and subtract terms in numerator:

$$\frac{2x}{(x+1)^2} = \frac{2x+2-2}{(x+1)^2} = \frac{2(x+1)}{(x+1)^2} - \frac{2}{(x+1)^2}$$

6. Use trigonometric identities:

$$\cot^2 x = \csc^2 x - 1$$

7. Multiply and divide by Pythagorean conjugate:

$$\frac{1}{1+\sin x}$$
$$\left(\frac{1}{1+\sin x}\right)\left(\frac{1-\sin x}{1-\sin x}\right)$$
$$\frac{1-\sin x}{\cos^2 x}$$
$$\sec^2 x - \frac{\sin x}{\cos^2 x}$$

$$b)\int \frac{4x}{x^2+9}dx$$

 $c)\int \frac{4x^2}{x^2+9}dx$

Block: Seat:

1.

 $\int \frac{1}{1+e^x} dx$

4.

 $\int \tan^2(2x) dx$