Unit III:

Costs of Production and Perfect Competition

Production= Converting

 inputs into output

Widget Production Simulation

Inputs and Outputs

- To earn profit, firms must make products (output)
- Inputs are the resources used to make outputs.
- Input resources are also called FACTORS.
-Total Physical Product (TP)- total output or quantity produced
- Marginal Product (MP)- the additional output generated by additional inputs (workers).

Marginal Product $=$

Change in Total Product
Change in Inputs
-Average Product (AP)- the output per unit of input Total Product
Average Product =
Units of Labor

Production Analysis

-What happens to the Total Product as you hire more workers?
-What happens to marginal product as you hire more workers?
-Why does this happens?
The Law of Diminishing Marginal Returns
As variable resources (workers) are added to fixed resources (machinery, tool, etc.), the additional output produced from each new worker will eventually fall.

Too many cooks in the kitchen!

Graphing Production

Three Stages of Returns Stage I: Increasing Marginal Returns MP rising. TP increasing at an increasing rate. Why? Specialization.

Three Stages of Returns Stage II: Decreasing Marginal Returns MP Falling. TP increasing at a decreasing rate. Why? Fixed Resources. Each worker adds less and less.

Three Stages of Returns Stage III: Negative Marginal Returns MP is negative. TP decreasing. Workers get in each others way

With your partner calculate MP and AP then discuss what the graphs for TP, MP, and AP look like. Remember quantity of workers goes on the x-axis.

\# of Workers (Input)	Total Product(TP) PIZZAS	Marginal Product(MP)	Average Product(AP)
0	0		
1	10		
2	25		
3	45		
4	60		
5	70		
6	75		
7	75		
8	70		

With your partner calculate MP and AP then discuss what the graphs for TP, MP, and AP look like. Remember quantity of workers goes on the x-axis.

\# of Workers (Input)	Total Product(TP) PIZZAS	Marginal Product(MP)	Average Product(AP)
0	0	-	-
1	10	10	
2	25	15	
3	45	20	
4	60	15	
5	70	10	
6	75	5	
7	75	0	
8	70	-5	

With your partner calculate MP and AP then discuss what the graphs for TP, MP, and AP look like. Remember quantity of workers goes on the x-axis.

\# of Workers (Input)	Total Product(TP) PIZZAS	Marginal Product(MP)	Average Product(AP)
0	0	-	-
1	10	10	10
2	25	15	12.5
3	45	20	15
4	60	15	15
5	70	10	14
6	75	5	12.5
7	75	0	10.71
8	70	-5	8.75

Identify the three stages of returns

\# of Workers (Input)	Total Product(TP) PIZZAS	Marginal Product(MP)	Average Product(AP)
0	0	-	-
1	10	10	10
2	25	15	12.5
3	45	20	15
4	60	15	15
5	70	10	14
6	75	5	12.5
7	75	0	10.71
8	70	-5	8.75

Identify the three stages of returns

\# of Workers (Input)	Total Product(TP) PIZZAS	Marginal Product(MP)	Average Product(AP)
0	0	-	-
1	10	10	10
2	25	15	12.5
3	45	20	15
4	60	15	15
5	70	10	14
6	75	5	12.5
7	75	0	10.71
8	70	-5	8.75

More Examples of the Law of Diminishing Marginal Returns

Example \#1: Learning curve when studying for an exam Fixed Resources-Amount of class time, textbook, etc. Variable Resources-Study time at home
Marginal return-
$-1^{\text {st }}$ hour-large returns
$-2^{\text {nd }}$ hour-less returns
-3 ${ }^{\text {rd }}$ hour-small returns
$-4^{\text {th }}$ hour- negative returns (tired and confused)
Example \#2: A Farmer has fixed resource of 8 acres planted of corn. If he doesn' t clear weeds he will get 30 bushels. If he clears weeds once he will get 50 bushels. Twice -57, Thrice-60. Additional returns diminishes each time.

Costs of Production F

 - $4=$
Accountants vs. Economists

Accountants look at only EXPLICIT COSTS
-Explicit costs (out of pocket costs) are payments paid by firms for using the resources of others.
-Example: Rent, Wages, Materials, Electricity Bills
$\underset{\text { Profit }}{\text { Accounting }} \begin{gathered}\text { Total } \\ \text { Revenue }\end{gathered}$ Accounting Costs (Explicit Only)
Economists examine both the EXPLICIT COSTS and the IMPLICIT COSTS
-Implicit costs are the opportunity costs that firms "pay" for using their own resources
-Example: Forgone Wage, Forgone Rent, Time
Economic - Total Profit \quad Revenue

Economic Costs

 (Explicit + Implicit)Accountants vs.
paid
-Exams

COSTS
 nomists

 Ents els.
From now on, all costs

 are automatically ECONOMIC COSTSEconomic Costs (Explicit + Implicit)

Short-Run

Production Costs

Definition of the "Short-Run"

- We will look at both short-run and long-run production costs.
- Short-run is NOT a set specific amount of time.
- The short-run is a period in which at least one resource is fixed.
- Plant capacity/size is NOT changeable
- In the long-run ALL resources are variable
- NO fixed resources
- Plant capacity/size is changeable Today we will examine Short-run costs.

Different Economic Costs

Total Costs

FC = Total Fixed Costs
VC = Total Variable Costs
TC = Total Costs

Per Unit Costs

AFC = Average Fixed Costs
AVC = Average Variable Costs
ATC = Average Total Costs
MC = Marginal Cost

Definitions

Fixed Costs:
Costs for fixed resources that DON' T change with the amount produced
Ex: Rent, Insurance, Managers Salaries, etc.
Average Fixed Costs $=\frac{\text { Fixed Costs }}{\text { Quantity }}$
Variable Costs:
Costs for variable resources that DO change as more or less is produced
Ex: Raw Materials, Labor, Electricity, etc.
Average Variable Costs = Variable Costs Quantity

Definitions

Total Cost:
Sum of Fixed and Variable Costs

$$
\text { Average Total Cost }=\frac{\text { Total Costs }}{\text { Quantity }}
$$

Marginal Cost:
Additional costs of an additional output. Ex: If the production of two more output increases total cost from $\mathbf{\$ 1 0 0}$ to $\mathbf{\$ 1 2 0}$, the MC is $\$ 10$.

Marginal Cost $=$
Change in Total Costs Change in Quantity

Calculating TC, VC, FC, ATC, AFC, and MC

TP	VC	FC	TC	MC	AVC	AFC	ATC
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1 0 0}$					
1	10						
2	16						
3	21						
4	26						
5	30						
6	36						
7	46						

Draw this in your notes

Calculating TC, VC, FC, ATC, AFC, and MC

TP	VC	FC	TC	MC	AVC	AFC	ATC
$\mathbf{0}$	0	100					
1	10	100					
2	16	100					
3	21	100					
4	26	100					
5	30	100					
6	36	100					
7	46	100					

Calculating TC, VC, FC, ATC, AFC, and MC

TP	VC	FC	TC	MC	AVC	AFC	ATC
$\mathbf{0}$	0	100	100				
1	10	100	110				
2	16	100	116				
3	21	100	121				
4	26	100	126				
5	30	100	130				
6	36	100	136				
7	46	100	146				

TOTAL COSTS GRAPHICALLY

 Combining VC0123456789101112131415 Quantity

TOTAL COSTS GRAPHICALLY

 Combining VC

0123456789101112131415 Quantity

Per Unit Costs

TP	VC	FC	TC	MC	AVC	AFC	ATC
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	-			
1	10	$\mathbf{1 0 0}$	$\mathbf{1 1 0}$				
2	16	$\mathbf{1 0 0}$	$\mathbf{1 1 6}$				
3	21	$\mathbf{1 0 0}$	$\mathbf{1 2 1}$				
4	26	100	$\mathbf{1 2 6}$				
5	30	$\mathbf{1 0 0}$	$\mathbf{1 3 0}$				
6	36	$\mathbf{1 0 0}$	$\mathbf{1 3 6}$				
7	46	100	$\mathbf{1 4 6}$				

Per Unit Costs

TP	VC	FC	TC	MC	AVC	AFC	ATC
0	0	100	100	-			
1	10	100	110	10			
2	16	100	116	6			
3	21	100	121	5			
4	26	100	$\mathbf{1 2 6}$	5			
5	30	100	130	4			
6	36	100	136	6			
7	46	100	146	10			

Per Unit Costs

TP	VC	FC	TC	MC	AVC	AFC	ATC
$\mathbf{0}$	0	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	-	-		
1	10	$\mathbf{1 0 0}$	$\mathbf{1 1 0}$	$\mathbf{1 0}$	10		
2	16	$\mathbf{1 0 0}$	$\mathbf{1 1 6}$	$\mathbf{6}$	8		
3	21	$\mathbf{1 0 0}$	$\mathbf{1 2 1}$	$\mathbf{5}$	7		
4	26	$\mathbf{1 0 0}$	$\mathbf{1 2 6}$	$\mathbf{5}$	6.5		
5	30	$\mathbf{1 0 0}$	$\mathbf{1 3 0}$	4	6		
6	36	$\mathbf{1 0 0}$	$\mathbf{1 3 6}$	$\mathbf{6}$	6		
7	46	$\mathbf{1 0 0}$	$\mathbf{1 4 6}$	$\mathbf{1 0}$	6.6		

Per Unit Costs

TP	VC	FC	TC	MC	AVC	AFC	ATC
$\mathbf{0}$	$\mathbf{0}$	100	$\mathbf{1 0 0}$	-	-	-	
1	10	100	$\mathbf{1 1 0}$	$\mathbf{1 0}$	$\mathbf{1 0}$	100	
2	16	100	$\mathbf{1 1 6}$	$\mathbf{6}$	$\mathbf{8}$	50	
3	21	100	$\mathbf{1 2 1}$	$\mathbf{5}$	7	33.3	
4	26	100	$\mathbf{1 2 6}$	$\mathbf{5}$	$\mathbf{6 . 5}$	25	
5	30	100	$\mathbf{1 3 0}$	4	6	20	
6	36	100	$\mathbf{1 3 6}$	$\mathbf{6}$	$\mathbf{6}$	16.67	
7	46	100	$\mathbf{1 4 6}$	$\mathbf{1 0}$	$\mathbf{6 . 6}$	14.3	

Asymptote

Per Unit Costs

TP	VC	FC	TC	MC	AVC	AFC	ATC
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	-	-	-	-
$\mathbf{1}$	$\mathbf{1 0}$	$\mathbf{1 0 0}$	$\mathbf{1 1 0}$	$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{1 0 0}$	$\mathbf{1 1 0}$
2	$\mathbf{1 6}$	$\mathbf{1 0 0}$	$\mathbf{1 1 6}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{5 0}$	58
$\mathbf{3}$	$\mathbf{2 1}$	$\mathbf{1 0 0}$	$\mathbf{1 2 1}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{3 3 . 3}$	40.3
4	$\mathbf{2 6}$	$\mathbf{1 0 0}$	$\mathbf{1 2 6}$	$\mathbf{5}$	$\mathbf{6 . 5}$	$\mathbf{2 5}$	31.5
$\mathbf{5}$	$\mathbf{3 0}$	$\mathbf{1 0 0}$	$\mathbf{1 3 0}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{2 0}$	26
$\mathbf{6}$	$\mathbf{3 6}$	$\mathbf{1 0 0}$	$\mathbf{1 3 6}$	$\mathbf{6}$	$\mathbf{6}$	$\mathbf{1 6 . 6 7}$	22.67
7	$\mathbf{4 6}$	$\mathbf{1 0 0}$	$\mathbf{1 4 6}$	$\mathbf{1 0}$	$\mathbf{6 . 6}$	$\mathbf{1 4 . 3}$	20.9

Per Unit Costs

TP	VC	FC	TC	MC	AVC	AFC	ATC
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	-	-	-	-
$\mathbf{1}$	$\mathbf{1 0}$	$\mathbf{1 0 0}$	$\mathbf{1 1 0}$	$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{1 0 0}$	$\mathbf{1 1 0}$
$\mathbf{2}$	$\mathbf{1 6}$	$\mathbf{1 0 0}$	$\mathbf{1 1 6}$	$\mathbf{6}$	8	$\mathbf{5 0}$	58
$\mathbf{3}$	$\mathbf{2 1}$	$\mathbf{1 0 0}$	$\mathbf{1 2 1}$	$\mathbf{5}$	7	33.3	40.3
$\mathbf{4}$	$\mathbf{2 6}$	$\mathbf{1 0 0}$	$\mathbf{1 2 6}$	$\mathbf{5}$	$\mathbf{6 . 5}$	25	31.5
$\mathbf{5}$	$\mathbf{3 0}$	$\mathbf{1 0 0}$	$\mathbf{1 3 0}$	$\mathbf{4}$	$\mathbf{6}$	20	26
$\mathbf{6}$	$\mathbf{3 6}$	$\mathbf{1 0 0}$	$\mathbf{1 3 6}$	$\mathbf{6}$	6	16.67	22.67
7	$\mathbf{4 6}$	$\mathbf{1 0 0}$	$\mathbf{1 4 6}$	$\mathbf{1 0}$	$\mathbf{6 . 6}$	$\mathbf{1 4 . 3}$	20.9

Per-Unit Costs (Average and Marginal)

Per-Unit Costs (Average and Marginal)

Per-Unit Costs (Average and Marginal)

Why is the MC curve U-shaped?

Why is the MC curve U-shaped?

-The MC curve falls and then rises because of diminishing marginal returns.
-Example:
-Assume the fixed cost is $\$ 20$ and the ONLY variable cost is the cost for each worker (\$10)

Workers	Total Prod	Marg Prod	Total Cost	Marginal Cost
0	0			
1	5			
2	13			
3	19			
4	23			
5	25			
6	26			

Why is the MC curve U-shaped?

-The MC curve falls and then rises because of diminishing marginal returns.
-Example:
-Assume the fixed cost is $\$ 20$ and the ONLY variable cost is the cost for each worker (\$10)

Workers	Total Prod	Marg Prod	Total Cost	Marginal Cost
0	0	-		
1	5	5		
2	13	8		
3	19	6		
4	23	4		
5	25	2		
6	26	1		

Why is the MC curve U-shaped?

-The MC curve falls and then rises because of diminishing marginal returns.
-Example:
-Assume the fixed cost is $\$ 20$ and the ONLY variable cost is the cost for each worker $($ Wage $=\$ 10)$

Workers	Total Prod	Marg Prod	Total Cost	Marginal Cost
0	0	-	$\$ 20$	
1	5	5	$\$ 30$	
2	13	8	$\$ 40$	
3	19	6	$\$ 50$	
4	23	4	$\$ 60$	
5	25	2	$\$ 70$	
6	26	1	$\$ 80$	

Why is the MC curve U-shaped?

-The MC curve falls and then rises because of diminishing marginal returns.
-Example:
-Assume the fixed cost is $\$ 20$ and the ONLY variable cost is the cost for each worker (\$10)

Workers	Total Prod	Marg Prod	Total Cost	Marginal Cost
$\mathbf{0}$	$\mathbf{0}$	-	$\$ 20$	-
1	5	5	$\$ 30$	$10 / 5=\$ 2$
2	13	$\mathbf{8}$	$\$ 40$	$10 / 8=\$ 1.25$
3	19	6	$\$ 50$	$10 / 6=\$ 1.6$
4	23	4	$\$ 60$	$10 / 4=\$ 2.5$
5	25	2	$\$ 70$	$10 / 2=\$ 5$
6	26	1	$\$ 80$	$10 / 1=\$ 10$

Why is the MC curve U-shaped?

- The additional cost of the first 13 units produced falls because workers have increasing marginal returns. -As production continues, each worker adds less and less to production so the marginal cost for each unit increases.

Workers	Total Prod	Marg Prod	Total Cost	Marginal Cost
0	0	-	$\$ 20$	-
1	5	5	$\$ 30$	$10 / 5=\$ 2$
2	13	8	$\$ 40$	$10 / 8=\$ 1.25$
3	19	6	$\$ 50$	$10 / 6=\$ 1.6$
4	23	4	$\$ 60$	$10 / 4=\$ 2.5$
5	25	2	$\$ 70$	$10 / 2=\$ 5$
6	26	1	$\$ 80$	$10 / 1=\$ 10$

Relationship between Production and Cost

Why is the MC curve Ushaped?

-When marginal product is increasing, marginal cost falls. -When marginal product falls, marginal costs increase.
MP and MC are mirror images of each other.

Relationship between Production and Cost

Quantity of output

Why is the ATC curve Ushaped?
-When the marginal cost is below the average, it pulls the average down. -When the marginal cost is above the average, it pulls the average up.

The MC curve intersects the ATC curve at its lowest point. Example:
-The average income in the room is $\mathbf{\$ 5 0 , 0 0 0}$.
-An additional (marginal) person enters the room: Bill Gates.
-If the marginal is greater than the average it pulls it up.

- Notice that MC can increase but still pull down the average.

Shifting Cost

Curves

Shifting Costs \square rves

What if Fixed

Shifting Costs Curves

TP	VC	FC	TC	MC	AVC	AFC	ATC
0	0	100	100	-	-	-	-
1	10	100	110	10	10	100	110
2	16	100	116	6	8	50	58
3	21	100	121	5	7	33.3	30.3
4	26	100	126	5	6.5	25	31.5
5	30	100	130	4	6	20	26
6	36	100	$\mathbf{1 3 6}$	6	6	$\mathbf{1 6 . 6 7}$	$\mathbf{2 2 . 6 7}$
7	46	100	146	10	$\mathbf{6 . 6}$	$\mathbf{1 4 . 3}$	20.9

Shifting Costs Curves

TP	VC	FC	TC	MC	AVC	AFC	ATC
$\mathbf{0}$	0	200	100	-	-	-	-
1	10	200	110	10	10	100	110
2	16	200	116	6	8	50	58
3	21	200	121	5	7	33.3	30.3
4	26	200	126	5	6.5	25	31.5
5	30	200	130	4	6	20	26
6	36	200	$\mathbf{1 3 6}$	6	6	$\mathbf{1 6 . 6 7}$	$\mathbf{2 2 . 6 7}$
7	46	200	$\mathbf{1 4 6}$	$\mathbf{1 0}$	$\mathbf{6 . 6}$	$\mathbf{1 4 . 3}$	20.9

Shifting Costs Curves

TP	VC	FC	TC	MC	AVC	AFC	ATC
$\mathbf{0}$	$\mathbf{0}$	200	200	-	-	-	-
1	10	200	210	$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{1 0 0}$	$\mathbf{1 1 0}$
2	16	200	216	6	8	50	58
3	21	200	221	5	7	$\mathbf{3 3 . 3}$	$\mathbf{3 0 . 3}$
4	26	200	226	5	6.5	25	$\mathbf{3 1 . 5}$
5	30	200	230	4	6	20	26
6	36	200	236	6	6	16.67	22.67
7	46	200	246	$\mathbf{1 0}$	$\mathbf{6 . 6}$	$\mathbf{1 4 . 3}$	$\mathbf{2 0 . 9}$

Which Per Unit Cost Curves Change?

Shifting Costs Curves

TP	VC	FC	TC	MC	AVC	AFC	ATC
$\mathbf{0}$	0	200	200	-	-	-	-
1	10	200	210	10	10	100	110
2	16	200	216	6	8	50	58
3	21	200	221	5	7	33.3	30.3
4	26	200	226	5	6.5	25	31.5
5	30	200	230	4	6	20	26
6	36	200	236	6	6	$\mathbf{1 6 . 6 7}$	$\mathbf{2 2 . 6 7}$
7	46	200	246	10	6.6	14.3	20.9

ONLY AFC and ATC Increase!

Shifting Costs Curves

TP	VC	FC	TC	MC	AVC	AFC	ATC
$\mathbf{0}$	$\mathbf{0}$	200	200	-	-	-	-
1	10	200	210	$\mathbf{1 0}$	$\mathbf{1 0}$	200	$\mathbf{1 1 0}$
2	16	200	216	6	8	100	58
3	21	200	221	5	7	$\mathbf{6 6 . 6}$	$\mathbf{3 0 . 3}$
4	26	200	226	5	6.5	50	$\mathbf{3 1 . 5}$
5	30	200	230	4	6	40	26
6	36	200	236	6	6	33.3	22.67
7	46	200	246	$\mathbf{1 0}$	$\mathbf{6 . 6}$	28.6	$\mathbf{2 0 . 9}$

ONLY AFC and ATC Increase!

Shifting Costs Curves

If fixed costs change ONLY AFC and ATC Change!

TP	VC	FC	TC	MC	AVC	AFC	ATC
0	0	200	200	-	-	-	-
1	10	200	210	10	10	200	210
2	16	200	216	6	8	100	108
3	21	200	221	5	7	66.6	73.6
4	26	200	226	5	6.5	50	56.5
5	30	200	230	4	6	40	46
6	36	200	236	6	6	33.3	39.3
7	46	200	246	10	6.6	28.6	35.2
MC and AVC DON' T change!							

Shift from an increase in a Fixed Cost

Quantity

Shift from an increase in a Fixed Cost

Quantity

Shifting Costs rves

Shifting Costs Curves

TP	VC	FC	TC	MC	AVC	AFC	ATC
0	0	100	100	-	-	-	-
1	10	100	110	10	10	100	110
2	16	100	116	6	8	50	58
3	21	100	121	5	7	33.3	30.3
4	26	100	126	5	6.5	25	31.5
5	30	100	130	4	6	20	26
6	36	100	136	6	6	16.67	22.67
7	46	100	146	10	6.6	14.3	20.9

Shifting Costs Curves

TP	VC	FC	TC	MC	AVC	AFC	ATC
0	0	100	100	-	-	-	-
1	11	100	110	10	10	100	110
2	18	100	116	6	8	50	58
3	24	100	121	5	7	33.3	30.3
4	30	100	126	5	6.5	25	31.5
5	35	100	130	4	6	20	26
6	43	100	136	6	6	16.67	22.67
7	55	100	146	10	6.6	14.3	20.9

Shifting Costs Curves

TP	VC	FC	TC	MC	AVC	AFC	ATC
0	0	100	100	-	-	-	-
1	11	100	111	10	10	100	110
2	18	100	118	6	8	50	58
3	24	100	124	5	7	33.3	30.3
4	30	100	130	3	6.5	25	31.5
5	35	100	135	4	6	20	26
6	43	100	143	6	6	16.67	22.67
7	55	100	155	10	6.6	14.3	20.9

Which Per Unit Cost Curves Change?

Shifting Costs Curves

TP	VC	FC	TC	MC	AVC	AFC	ATC
0	0	100	100	-	-	-	-
1	11	100	111	11	10	100	110
2	18	100	118	7	8	50	58
3	24	100	124	6	7	33.3	30.3
4	30	100	130	6	6.5	25	31.5
5	35	100	135	5	6	20	26
6	43	100	143	8	6	16.67	22.67
7	55	100	155	12	6.6	14.3	20.9

MC, AVC, and ATC Change!

Shifting Costs Curves

TP	VC	FC	TC	MC	AVC	AFC	ATC
$\mathbf{0}$	0	$\mathbf{1 0 0}$	100	-	-	-	-
1	11	100	111	11	11	100	110
2	18	100	118	7	9	50	58
3	24	100	124	6	8	$\mathbf{3 3 . 3}$	$\mathbf{3 0 . 3}$
4	30	100	130	6	7.5	25	31.5
5	35	100	135	5	7	20	26
6	43	$\mathbf{1 0 0}$	143	8	7.16	$\mathbf{1 6 . 6 7}$	$\mathbf{2 2 . 6 7}$
7	55	$\mathbf{1 0 0}$	$\mathbf{1 5 5}$	$\mathbf{1 2}$	7.8	$\mathbf{1 4 . 3}$	$\mathbf{2 0 . 9}$

MC, AVC, and ATC Change!

Shifting Costs Curves

If variable costs change MC, AVC, and ATC Change!

TP	VC	FC	TC	MC	AVC	AFC	ATC
0	0	100	100	-	-	-	-
1	11	100	111	11	11	100	111
2	18	100	118	7	9	50	59
3	24	100	124	6	8	33.3	41.3
4	30	100	130	6	7.5	25	32.5
5	35	100	135	5	7	20	27
6	43	100	143	8	7.16	16.67	23.83
7	55	100	155	12	7.8	14.3	22.1

Shift from an increase in a Variable Costs

Quantity

Shift from an increase in a Variable Costs

Quantity

Long-Run Costs

Definition and Purpose of the Long Run In the long run all resources are variable. Plant capacity/size can change.

Why is this important?
The Long-Run is used for planning. Firms use to identify which plant size results in the lowest per unit cost. Ex: Assume a firm is producing 100 bikes with a fixed number of resources (workers, machines, etc.). If this firm decides to DOUBLE the number of resources, what will happen to the number of bikes it can produce?
There are only three possible outcomes:

1. Number of bikes will double (constant returns to scale)
2. Number of bikes will more than double (economies of scale)
3. Number of bikes will less than double (diseconomies of scale)

Long Run ATC

What happens to the average total costs of a product when a firm increases its plant capacity?

Example of various plant sizes:
-I make looms out of my garage with one saw
\cdot I rent out building, buy 5 saws, hire $\mathbf{3}$ workers
-I rent a factor, buy 20 saws and hire 40 workers
-I build my own plant and use robots to build looms.
-I create plants in every major city in the U.S.
Long Run ATC curve is made up of all the different short run ATC curves of various plant sizes.

ECONOMIES OF SCALE

Why does economies of scale occur?

- Firms that produce more can better use Mass Production Techniques and Specialization.
Example:
- A car company that makes $\mathbf{5 0}$ cars will have a very high average cost per car.
- A car company that can produce $\mathbf{1 0 0 , 0 0 0}$ cars will have a low average cost per car.
- Using mass production techniques, like robots, will cause total cost to be higher but the average cost for each car would be significantly lower.

Long Run AVERAGE Total Cost

Long Run AVERAGE Total Cost

 Diseconomies of Scale-Costs
$\$ 9,900,000$

Long Run AVERAGE Total Cost

Long Run AVERAGE Total Cost

These are all short run
Costs
$\$ 9,900,000$

Long Run AVERAGE Total Cost

Costs

LRATC Simplified

The law of diminishing marginal returns doesn' t apply in the long run because there are no FIXED RESOURCES.
Costs

Quantity

Perfect

Competition

FOUR MARKET STRUCTURES

Characteristics of Perfect Competition: Examples of Perfect Competition: Avocado farmers, sunglass huts, and hammocks in Mexico

- Many small firms
- Identical products (perfect substitutes)
- Easy for firms to enter and exit the industry
- Seller has no need to advertise
- Firms are "Price Takers"

The seller has NO control over price.

Perfectly Competitive Firms

Example:

- Say you go to Mexico to buy a hammock.
- After visiting at few different shops you find that the buyers and sellers always agree on $\$ 15$.
- This is the market price (where demand and supply meet)

1. Is it likely that any shop can sell hammocks for $\mathbf{\$ 2 0}$?
2. Is it likely that any shop will sell hammocks for $\mathbf{\$ 1 0}$?
3. What happens if a shop prices hammocks too high?
4. Do you think that these firms make a large profit off of hammocks? Why?
These firms are "price takers" because the sell their products at a price set by the market.

Demand for Perfectly Competitive Firms

Why are they Price Takers?
-If a firm charges above the market price, NO
ONE will buy. They will go to other firms
-There is no reason to price low because consumers will buy just as much at the market price.

Since the price is the same at all quantities demanded, the demand curve for each firm is...

> Perfectly Elastic (A Horizontal straight line)

Demand for Perfectly Competitive Firms

Why are they Price Takers?
-If a firm charges above the market price, NO
ONE will buy. They will go to other firms
-There is no reason to price low because consumers will buy just as much at the market price.

Since the price is the same at all quantities demanded, the demand curve for each firm is...

> Perfectly Elastic (A Horizontal straight line)

The Competitive Firm is a Price Taker Price is set by the Industry

The Competitive Firm is a Price Taker Price is set by the Industry

What is the additional
revenue for selling an additional unit?
$1^{\text {st }}$ unit earns $\$ 15$
$2^{\text {nd }}$ unit earns $\$ 15$
Marginal revenue is constant at \$15

Notice:

- Total revenue increases at a constant rate
- MR equal Average Revenue

revenu

For Perfect Competition:

Maximizing
 PROFIT!

Short-Run Profit Maximization What is the goal of every business? To Maximize Profit!!!!!!

-To maximum profit firms must make the right output
-Firms should continue to produce until the additional revenue from each new output equals the additional cost.
Example (Assume the price is $\mathbf{\$ 1 0}$)

- Should you produce...
...if the additional cost of another unit is \$5
...if the additional cost of another unit is $\$ 9$
...if the additional cost of another unit is $\$ 11$

Short-Run Profit Max hization

 What is the oal of ev pusiness?
$\mathrm{MR}=\mathrm{MC}$

Should y
...if the otif ost porn is $\$ 5$
...if the additio cost other unins $\$ 9$
...if the additio cost of another unit is $\$ 11$
-How much output should be produced?
-How much is Total Revenue? How much is Total Cost? -Is there profit or loss? How much?

Suppose the market demand falls. What would happen if the price is lowered from $\$ 7$ to \$5?
The $M R=M C$ rule still applies but now the firm will make an economic loss.

The profit maximizing rule is also the loss minimizing rule!!!
-How much output should be produced?
-How much is Total Revenue? How much is Total Cost? -Is there profit or loss? How much?

Assume the market demand falls even more. If the price is lowered from \$5 to \$4 the firm should stop producing. Shut Down Rule:
-A firm should continue to produce as long as the price is above the AVC
-When the price falls below AVC then the firm should minimize its losses by shutting down
-Why? If the price is below AVC the firm is losing more money by producing than the they would have to pay to shut down.

SHUT DOWN! Produce Zero

P<AVC. They should shut down Producing nothing is cheaper than staying open.

Profit Maximizing Rule $\mathrm{MR}=\mathrm{MC}$

Three Characteristics of MR=MC Rule: 1. Rule applies to ALL markets structures (PC, Monopolies, etc.)
2. The rule applies only if price is above AVC
3. Rule can be restated $\mathbf{P}=\mathbf{M C}$ for perfectly competitive firms (because $\mathbf{M R}=\mathbf{P}$)

Side-by-side graph for perfectly completive industry and firm.

Is the firm making a profit or a loss? Why?

Where is the profit maximization point? How do you know? What output should be produced? What is TR? What is TC? How much is the profit or loss? Where is the Shutdown Point?

Supply Revisited

Marginal Cost and Supply As price increases, the quantity

Marginal Cost an/Supply
tity dean zes
reay

tity increases

 $\$ 5$2

Marginal Cost and Supply
What if variable costs increase (ex: tax)?

Marginal Cost and Supply What if variable costs decrease (ex: subsidy)?

Perfect Competition in the Long-Run
You are a wheat farmer. You learn that there is a more profit in making corn. What do you do in the long run?

In the Long-run...
-Firms will enter if there is profit -Firms will leave if there is loss -So, ALL firms break even, they make NO economic profit (No Economic Profit=Normal Profit)
-In long run equilibrium a perfectly competitive firm is EXTREMELY efficient.

Side-by-side graph for perfectly completive industry and firm in the LONG RUN
Is the firm making a profit or a loss? Why?

Firm
(price taker)

Firm in Long-Run Equilibrium

> Price $=M C=$ Minimum ATC
> Firm making a normal profit

Going from Long-Run to Short-Run

1. Is this the short or the long run? Why? 2. What will firms do in the long run? 3. What happens to P and Q in the industry? 4. What happens to P and Q in the firm?

Firms enter to earn profit so supply

increases in the industry

 Price decreases and quantity increases

Price falls for the firm because they are price takers.
Price decreases and quantity decreases

New Long Run Equilibrium at $\$ 10$ Price Zero Economic Profit

1. Is this the short or the long run? Why? 2. What will firms do in the long run? 3. What happens to P and Q in the industry? 4. What happens to P and Q in the firm?

Firms leave to avoid losses so supply decreases in the industry Price increases and quantity decreases \$20

Price increase for the firm because they are price takers. Price increases and quantity increases

New Long Run Equilibrium at \$20 Price Zero Economic Profit

Going from Long-Run to Long-Run

Currently in Long-Run Equilibrium

 If demand increases, what happens in the short-run and how does it return to the long run?

Demand Increases

The price increases and quantity increases Profit is made in the short-run

Firms enter to earn profit so supply increases in the industry Price Returns to \$15

Back to Long-Run Equilibrium The only thing that changed from long-run to long-run is quantity in the industry

Efficiency

PURE COMPETITION AND EFFICIENCY

In general, efficiency is the optimal use of societies scarce resources
-Perfect Competition forces producers to use limited resources to their fullest. -Inefficient firms have higher costs and are the first to leave the industry. -Perfectly competitive industries are extremely efficient
There are two kinds of efficiency:

$$
\begin{aligned}
& \text { 1. Productive Efficiency } \\
& \text { 2. Allocative Efficiency }
\end{aligned}
$$

Efficiency Revisited

Which points are productively efficient? Which are allocatively efficient?

Productive Efficiency

 The production of a good in a least costly way. (Minimum amount of resources are being used)Graphically it is where... Price $=$ Minimum ATC

Short-Run

Notice that the product is NOT being made at the lowest possible cost (ATC not at lowest point).

Q
Quantity

Short-Run

Notice that the product is NOT being made at the lowest possible cost (ATC not at lowest point).

Quantity

Notice that the product is being made at the lowest possible cost (Minimum ATC)

Allocative Efficiency

Producers are allocating resources to make the products most wanted by society. Graphically it is where... Price $=\mathbf{M C}$

Why? Price represents the benefit people get from a product.

What if the firm makes 15 units?

What if the firm makes 22 units?

Long-Run Equilibrium

$\mathbf{P}=$ Minimum $\mathrm{ATC}=\mathbf{M C}$ EXTREMELY EFFICIENT!!!!

Quantity

