Unit 2: Supply, Demand, and Consumer Choice

DEMAND DEFINED

What is Demand?

- Demand is the different quantities of goods that consumers are willing and able to buy at different prices.
 - (Ex: Bill Gates is <u>able</u> to purchase a Ferrari, but if he isn't <u>willing</u> he has NO demand for one)

What is the Law of Demand?

The law of demand states There is an <u>INVERSE</u> relationship between price and quantity demanded

Why does the Law of Demand occur?

- The law of demand is the result of three separate behavior patterns that overlap:
 1.The Substitution effect
 2.The Income effect
 3.The Law of Diminishing Marginal
 - Utility
 - We will define and explain each...

Why does the Law of Demand occur?

1. The Substitution Effect

2. The Income Effect

• If the price goes up for a product, consumer but less of that product and more of another substitute product (and vice versa)

If the price goes down for a product, the <u>purchasing power</u> increases for consumers - allowing them to purchase more.

Why does the Law of Demand occur?

3. Law of Diminishing Marginal Utility

U-TIL-IT-Y Utility = Satisfaction

- We buy goods because we get utility from them
- The law of diminishing marginal utility states that as you consume more units of any good, the additional satisfaction from each additional unit will eventually start to decrease
- In other words, the more you buy of ANY GOOD the less satisfaction you get from each new unit.
- **Discussion Questions:**
- **1. What does this have to do with the Law of Demand?**
- 2. How does this effect the pricing of businesses?

The Demand Curve

- A demand curve is a graphical representation of a demand schedule.
- The demand curve is downward sloping showing the inverse relationship between price (on the y-axis) and quantity demanded (on the x-axis)
- When reading a demand curve, assume all outside factors, such as income, are held constant. (This is called ceteris paribus)

Let's draw a new demand curve for cereal...

GRAPHING DEMAND

Change in Demand

What Causes a Shift in Demand?

5 Determinates (SHIFTERS) of Demand:

1. Tastes and Preferences 2. Number of Consumers **3. Price of Related Goods** 4. Income **5. Future Expectations**

Changes in PRICE don't shift the curve. It only causes movement along the curve.

Prices of Related Goods

The demand curve for one good can be affected by a change in the price of ANOTHER related good.

- 1. Substitutes are goods used in place of one another.
 - If the price of one increases, the demand for the other will increase (or vice versa)
 - Ex: If price of Pepsi falls, demand for coke will...
- 2. Complements are two goods that are bought and used together.
 - If the price of one increase, the demand for the other will fall. (or vice versa)
 - Ex: If price of skis falls, demand for ski boots will...

Income

The incomes of consumer change the demand, but how depends on the type of good.

1. Normal Goods

- As income increases, demand increases
- As income falls, demand falls
- Ex: Luxury cars, Sea Food, jewelry, homes
- 2. Inferior Goods
 - As income increases, demand falls
 - As income falls, demand increases
 - Ex: Top Romen, used cars, used cloths,

Practice

First, identify the determinant (shifter) then decide if demand will increase or decrease

	Shifter	Increase or Decrease	Left or Right
1			
2			
3			
4			
5			
6			
7			
8			

Practice

First identify the determinant (Shifter). Then decide if demand will increase or decrease

Hamburgers (a normal good)

- **1. Population boom**
- 2. Incomes fall due to recession
- **3. Price for Carne Asada burritos falls to \$1**
- 4. Price increases to \$5 for hamburgers
- 5. New health craze- "No ground beef"
- 6. Hamburger restaurants announce that they will significantly increase prices NEXT month
- 7. Government heavily taxes shake and fries causes their prices to quadruple.
- 8. Restaurants lower price of burgers to \$.50

Supply

Supply Defined

What is supply?

Supply is the different quantities of a good that sellers are **willing** and **able** to sell (produce) at different prices.

What is the Law of Supply?

There is a DIRECT (or positive) relationship between price and quantity supplied.

- •As price increases, the quantity producers make increases
- •As price falls, the quantity producers make falls.

Why? Because, at higher prices profit seeking firms have an incentive to produce more.

EXAMPLE: Mowing Lawns

6 Determinants (SHIFTERS) of Supply

- 1. Prices/Availability of inputs (resources)
- 2. Number of Sellers
- 3. Technology
- 4. Government Action: Taxes & Subsidies

Subsidies

A **subsidy** is a government payment that supports a business or market. Subsidies cause the supply of a good to increase.

- 5. Opportunity Cost of Alternative Production
- **6. Expectations of Future Profit**

Changes in PRICE don't shift the curve. It only causes movement along the curve.

Supply Practice

First, identify the determinant (shifter) then decide if supply will increase or decrease

	Shifter	Increase or Decrease	Left or Right
1			
2			
3			
4			
5			
6			

Supply Practice

- 1. Which determinant (SHIFTER)?
- 2. Increase or decrease?
- 3. Which direction will curve shift?

Hamburgers

- 1. Mad cow kills 20% of cows
- 2. Price of burgers increase 30%
- 3. Government taxes burger producers
- 4. Restaurants can produce burgers and/or tacos. A demand increase causes the price for tacos to increase 500%
- 5. New bun baking technology cuts production time in half
 6 Minimum wage increases to \$10
- 6. Minimum wage increases to \$10

Supply and Demand are put together to determine equilibrium price and equilibrium quantity

Equilibrium Quantity is 30

How much is the shortage if the price is \$1?

Shifting Supply and Demand

Supply and Demand Analysis Easy as 1, 2, 3

- **1. Before the change:**
 - Draw supply and demand
 - Label original equilibrium price and quantity
- 2. The change:
 - Did it affect supply or demand <u>first</u>?
 - Which determinant caused the shift?
 - Draw increase or decrease
- 3. After change:
 - Label new equilibrium?
 - What happens to Price? (increase or decrease)
 - What happens to Quantity? (increase or decrease) Let's Practice!

S&D Analysis Practice

- 1. Before Change (Draw equilibrium)
- 2. The Change (S or D, Identify Shifter)
- **3.** After Change (Price and Quantity After)

Analyze Hamburgers

- Price of sushi (a substitute) increases
 New grilling technology cuts production time in half
- **3. Price of burgers falls from \$3 to \$1.**
- 4. Price for ground beef triples
- 5. Human fingers found in multiple burger restaurants.

Double Shifts

- Suppose the demand for sports cars fell at the same time as production technology improved.
- Use S&D Analysis to show what will happen to PRICE and QUANTITY.

If TWO curves shift at the same time, EITHER price or quantity will be indeterminate.

Voluntary Exchange Terms

Consumer Surplus is the difference between what you are willing to pay and what you actually pay.

CS = Buyer's Maximum – Price

Producer's Surplus is the difference between the price the seller received and how much they were willing to sell it for.

PS = Price – Seller's Minimum

Consumer and Producer's Surplus

42

Unit 2: Supply, Demand, and Consumer Choice

Government Involvement

#1-Price Controls: Floors and Ceilings
#2-Import Quotas
#3-Subsidies
#4-Excise Taxes

#1-PRICE CONTROLS

Who likes the idea of having a price ceiling on gas so prices will never go over \$1 per gallon?

Practice Questions

- 1. Which of the following will occur if a legal price floor is placed on a good below its free market equilibrium?
 - A. Surpluses will develop
 - **B.** Shortages will develop
 - C. Underground markets will develop
 - **D.** The equilibrium price will ration the good
 - E. The quantity sold will increase
- 2. Which of the following statements about price control is true?
 - A. A price ceiling causes a shortage if the ceiling price is above the equilibrium price
 - **B.** A price floor causes a surplus if the price floor is below the equilibrium price
 - **C.** Price ceilings and price floors result in a misallocation of resources
 - **D.** Price floors above equilibrium cause a shortage ⁴⁸

Are Price Controls Good or Bad? To be "efficient" a market must maximize consumers and producers surplus

49

Are Price Controls Good or Bad? To be "efficient" a market must maximize consumers and producers surplus

Are Price Controls Good or Bad? To be "efficient" a market must maximize consumers and producers surplus

51

Are Price Controls Good or Bad? To be "efficient" a market must maximize consumers and producers surplus

#2 Import Quotas

A quota is a limit on number of exports. The government sets the maximum amount that can come in the country. Purpose: •To protect domestic producers from a cheaper world price.

•To prevent domestic unemployment

International Trade and Quotas

This graphs show the domestic supply and demand for grain. The letters represent area.

Identify the following:

- 1. CS with no trade
- 2. PS with no trade
- 3. CS if we trade at world price (P_w)
- 4. PS if we trade at world price (P_w)
- **Demand 5.** Amount we import at world price $(\mathbf{P}_{\mathbf{W}})$
 - 6. If the government sets a quota on imports of Q₄ - Q₂, what happens to CS and PS?

#3 Subsidies

The government just gives producers money. The goal is for them to make more of the goods that the government thinks are important.

Ex:

Agriculture (to prevent famine)Pharmaceutical Companies

- •Environmentally Safe Vehicles
- •FAFSA

Result of Subsidies to Corn Producers

Unit 2: Supply, Demand, and Consumer Choice

#4 Excise Tax = A per unit tax on producers Excise Tax = A per unit tax on producers For every unit made, the producer must pay \$ NOT a Lump Sum (one time only)Tax The goal is for them to make less of the goods that the government deems dangerous or unwanted.

Ex:

- •Cigarettes "sin tax"
- •Alcohol "sin tax"
- •Tariffs on imported goods
- Environmentally Unsafe ProductsEtc.

Excise Taxes

59

Excise Taxes

) 60

Tax Practice

4 Types of Elasticity

- **1. Elasticity of Demand**
- 2. Elasticity of Supply
- **3. Cross-Price Elasticity (Subs vs. Comp)**
- 4. Income Elasticity (Norm or Infer)

1. Elasticity of Demand

Elasticity of Demand-

- Measurement of <u>consumers</u> responsiveness to a change in price.
- What will happen if price increase? How much will it effect Quantity Demanded

Who cares?

- Used by firms to help determine prices and sales
- Used by the government to decide how to tax

Inelastic Demand INelastic = Insensitive to a change in price. •If price increases, quantity demanded will fall a little •If price decreases, quantity demanded increases a little. In other words, people will continue to buy it.

A INELASTIC demand curve is steep! (looks like an "I")

Examples: •Gasoline •Milk •Diapers

- •Chewing Gum
- Medical Care
- Toilet paper

Inelastic Demand General Characteristics of INelastic Goods: Few Substitutes Necessities •Small portion of income •**Required now, rather** than later •Elasticity coefficient less than 1

Elastic Demand Elastic = Sensitive to a change

in price.

If price increases, quantity demanded will fall a lot
If price decreases, quantity demanded increases a lot.

In other words, the amount people buy is sensitive to price.

An ELASTIC demand curve is flat!

Examples:•Soda•Real Estate•Boats•Pizza•Beef•Gold

Elastic Demand General Characteristics of Elastic Goods:

- Many Substitutes
- Luxuries
- Large portion of income
- Plenty of time to

decide

• Elasticity coefficient greater than 1

 $\% \Delta in \ price$

Elastic or Inelastic?

Beef- Elastic- 1.27 Gasoline- INelastic - .20 Real Estate- Elastic- 1.60 Medical Care- INelastic - .31 Electricity- INelastic - .13 Gold- Elastic - 2.6 What about the demand for insulin for diabetics?

What if % change in quantity demanded equals % change in price?

Perfectly INELASTIC (Coefficient = 0)

Unit Elastic (Coefficient =1) 45 Degrees

Total Revenue TestUses elasticity to show how changes in price will
affect total revenue (TR).(TR = Price x Quantity)

Elastic Demand-

- Price increase causes TR to decrease
- Price decrease causes TR to increase
- **Inelastic Demand-**
 - Price increase causes TR to increase
 - Price decrease causes TR to decrease

Unit Elastic-

• Price changes and TR remains unchanged

Ex: If demand for milk is INelastic, what will happen to expenditures on milk if price increases?

Is the range between A and B, elastic, inelastic, or unit elastic?

2. Price Elasticity of Supply

Elasticity of Supply-

• Elasticity of supply shows how sensitive <u>producers</u> are to a change in price.

Elasticity of supply is based on time limitations. Producers need time to produce more.

 $\% \Delta$ in quantity

%∆in price

INelastic = Insensitive to a change in price (Steep curve)

- Most goods have INelastic supply in the short-run Elastic = Sensitive to a change in price (Flat curve)
- Most goods have elastic supply in the long-run Perfectly Inelastic = Q doesn't change (Vertical line)
- Set quantity supplied

3. Cross-Price Elasticity of Demand

- Cross-Price elasticity shows how sensitive a product is to a change in price of <u>another</u> good
- It shows if two goods are substitutes or compliments
 <u>% change in quantity of product "b"</u>
 % change in price of product "a"

P increases 20%

- If coefficient is negative (shows inverse relationship) than the goods are complements
- If coefficient is positive (shows direct relationship) than the goods are substitutes

4. Income-Elasticity of Demand

- Income elasticity shows how sensitive a product is to a change in INCOME
- It shows if goods are normal or inferior

<u>% change in quantity</u> % change in income

Income increases 20%, and quantity decreases 15% then the good is a... INFERIOR GOOD

- If coefficient is negative (shows inverse relationship) than the good is inferior
- If coefficient is positive (shows direct relationship) than the good is normal

Ex: If income falls 10% and quantity falls 20%...

Consumer Choice and Utility Maximization

Calculate Marginal Utility

# of Slices of Pizza	Total Utility (in dollars)	Marginal Utility/Benefit
0	0	
1	8	
2	14	
3	19	
4	23	
5	25	
6	26	
7	26	
8	24	
TT	•	1.1

How many pizzas would you buy if the price per slice was \$2?

Calculate Marginal Utility

# of Slices of Pizza	Total Utility (in dollars)	Marginal Utility/Benefit	Marginal Cost	
0	0	0	\$2	
1	8	8	\$2	
2	14	6	\$2	
3	19	5	\$2	
4	23	4	\$2	
5	25	2	\$2	
6	26	1	\$2	
7	26	0	\$2	
8	24	-2	\$2	
How many pizzas would you buy if the price				

per slice was \$2?

\$10 Utility Maximization

# Times Going	Marginal Utility (Movies)	MU/P (Price =\$10)	Marginal Utility (Go Carts)	MU/P (Price =\$5)
1st	30		10	
2nd	20		5	
3rd	10		2	
4th	5		1	

\$5

\$10 Utility Maximization

# Times	Marginal Utility	MU/P	Marginal	MU/P
Going	(Movies)	(Price =\$10)	(Go Carts)	(Price =\$5)
1st	30	\$3	10	
2nd	20		5	
3rd	10		2	
4th	5		1	

\$5

Utility Maximization

\$5

\$10

# Times Going	Marginal Utility (Movies)	MU/P (Price =\$10)	Marginal Utility (Go Carts)	MU/P (Price =\$5)
1st	30	\$3	10	\$2
2nd	20		5	
3rd	10		2	
4th	5		1	

Utility Maximizing Rule

The consumer's money should be spent so that the marginal utility per dollar of each goods equal each other.

	$\underline{MUx} =$	<u>MUy</u>	
	P _x	$\mathbf{P}_{\mathbf{y}}$	
A	pples	0	ranges
Quantity	<u>Total utility</u>	Quantity	<u>Total utility</u>
0	0	0	0
1	20	1	30
2	35	2	50
3	45	3	65
4	50	4	75
5	52	5	80

Assume apples cost \$1 each and oranges cost \$2 each. If the consumer has \$7, identify the combination that maximizes utility. ₈₄